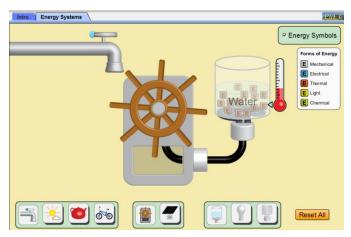
Name _				Period	Date		
		Energy Form		_			
		http://phet.colorado.ed	<u>du/en/simulatior</u>	<u>n/energy-forms</u>	<u>-and-changes</u>		
_		t energy forms". Click the f ne neon green "Run Now" t		rill load the Uni	versity of Colorado's PHET		
(transfer manipula output. <u>(</u>	s) th ate th Clicl	at can occur between them ne energy input, observe th	n. You are also be process of ele <u>s" tab</u> . We will	able to work w ectrical energy do all of our wo	ns of energy and the changes ith a system where you can generation and manipulate the ork here. Be sure to click the throughout the process.		
<u>Getting</u>	j Fa	miliar With The Optio	<u>ns</u>				
		e experiment with the differ to play with – then comple			tput options – there are many		
		n energy sources (input) cal energy?	can cause the t	urbine (wooder	n wheel) to spin and generate		
2. W	/hich	energy sources (input)	cause the solar _l	panels to gene	rate electrical energy?		
3. W	/hich	energy output objects wo	ork with the turb	ine?			
4. W	/hich	energy output objects wo	ork with the sola	r panels?			
5. W	What happens to the amount of electrical energy that is generated when the:						
			Specify "a little	e" or "a lot"			
	a.	Faucet is on high?					
	b.	Faucet is on low?					
	C.	There are no clouds?					
	d.	There are lots of clouds?					
	e.	Low heat on the kettle?					
	f.	High Heat on the kettle?					
	g.	The girl pedals slowly?					
	h.	The girl pedals quickly?					


6. Explain why the cyclist must be fed in order to continue to pedal?

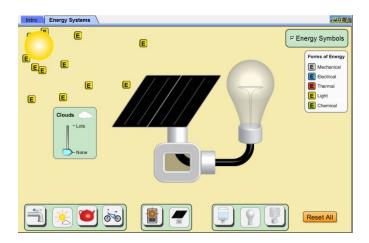
7. The Law of Conservation of Energy states that ...

Exploring Energy Transfer

Set up your system as shown in the picture. Let it run for a while and then complete the sentences using the energy symbols to help you "see" the flow of the energy within each system.

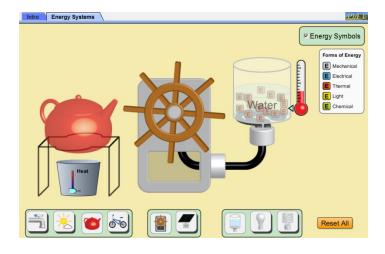
8. Turbine Moved by Medium Water Flow from Faucet With A Water Heater System

In this system, **kinetic** energy from the moving water of the faucet turns the turbine. The

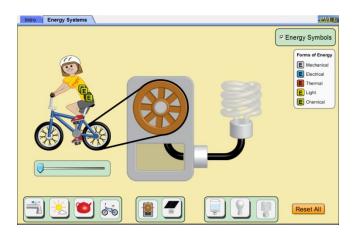

______ energy of the spinning turbine generates ______ energy

which is transformed into _____ energy that causes the temperature of the water to

increase. The water then becomes steam and gives off more _____ energy into the


atmosphere.

9. Solar Panel in Medium Cloud Cover With A Regular Light Bulb System


In this system, _	energy from the sunlight causes the solar panel to				
create	energy which fl	ows into the incandescent light bulb. In the light bulb,			
the energy is transformed into two different types of energy:					
	energy and	energy.			

10. Turbine Moved by Steam from Medium Heat Kettle With A Water Heater System

In this system, ei	nergy from the flames of the fire transfer energy to the kettle				
causing the liquid to become steam. The	energy of the moving steam spins				
the turbine which generates	energy that is used to increase the temperature				
of the water. The	_ energy of the steam is transferred to the atmosphere.				
Note Another form of energy is released from the kettle. What is it?					

11. <u>Turbine Moved by Cyclist Pedaling at Medium Speed With A Fluorescent Light Bulb System</u>

	In this system,	energy from the cyclist is converted to a lot of				
		energy and	d a little bit of		_ energy. The	
		energy fron	m the turning bicycle	wheel spins the	e turbine which generate	S
		energy. Th	ne fluorescent light b	ulb converts this	s energy into two new fo	rms: a
ot of _		energ	gy and very little		energy.	
12			` ,		t bulb (rounded) and obs e energy and output of t	
	In your opinion, w	hich light b	ulb is more efficient?			_
	Explain how you	know this.				-
13			gy (not including kine mally be present in tl		is not included in the "Ei?	nergy
14	_	versions, id	lentify (list) at least th		ng what we have discus aces where this form of	sed

15. In the space below, explain why this simulation is a good way to illustrate the Law of Conservation of Energy. *Use a specific example to support your answer.*