Gas Law Practice Problems

Gas Molar Volume Calculations: 1 mole of gas = 22.4 L

- 1. How many liters of volume is occupied by 2.7 mol of O_2 gas?
- 2. If a gas expands to 7.9 L, how many moles of gas are present?

Gas Variables Calculations: $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

- 1. How does the popping of bubble wrap illustrate the relationship between **pressure** and **volume**?
- 2. If neon gas has a pressure of 2.00 atm when in a 12 L tank, what is its **pressure** when put in a neon sign where the volume is 2 L?
 - If the gas is being **compressed** into a **smaller volume**, do you expect that the pressure should increase or decrease?
 - Perform the calculation:

- 3. An aerosol can contains 3 L of a compressed gas at a pressure of 4.1 atmospheres. If this gas is sprayed into a plastic bag, what is the volume of the bag if the pressure is 1.0 atmosphere?
 - If the gas is being **released** into an area with **less pressure**, do you expect that the volume should <u>increase</u> or <u>decrease</u>?
 - Perform the calculation:

4.	What temperature (in K) is needed to obtain a volume of 5 L from a volume of 2 L at 298 K? - If the gas is expanding and increasing volume , do you expect that the temperature <u>increased</u> or <u>decreased</u> ?
	- Perform the calculation:
5.	What is the temperature of 500 L of nitrogen at a pressure of 2.98 atm if it has a temperature of 250 K at a pressure of 3.02 atm and a volume of 400 L?
6.	A gas that has a volume of 28 liters, a temperature of 45° C, and an unknown pressure has its volume increased to 34 liters and its temperature increased to 65 $^{\circ}$ C, and a pressure measured to be 2.0 atm. What was the original pressure of the gas? (Hint: Check your temperatures!)
<u>Gas V</u>	ariables Relationships:
	uestions 7-12, complete the statements by writing "decreases," "increases," or "remains the" on the line provided in regards to the statement below:
	As a gas is compressed in a cylinder (volume is decreased)
7.	its mass
	the number of gas molecules
	its pressure
). its volume
	the distance between gas molecules
12	2. its temperature
13	3. The theory that explains the behavior of gases in a confined space is called
	the

Date:

Name:

Pd:

- 15. **Circle one**: If pressure is constant, the volume of a sample of gas **(increases/decreases)** as the temperature increases.
- 16. What is absolute zero?

Match the variables used to describe gases to their correct units.

_____18. Farenheit (°F)

a. Pressure

____19. Celsius (°C)

b. Temperature

_____20. Milliliter (mL)

c. Volume

____21. Kelvin (K)

_____22. atmospheres (atm)

____23. Liters (L)

_____23. Kilopascals (kPa)