Gos Law Practice Problems

Gas Molar Volume Calculations: 1 mole of gas $=22.4 \mathrm{~L}$

1. How many liters of volume is occupied by 2.7 mol of O_{2} gas?
2. If a gas expands to 7.9 L , how many moles of gas are present?

Gas Variables Calculations: $\quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

1. How does the popping of bubble wrap illustrate the relationship between pressure and volume?
2. If neon gas has a pressure of 2.00 atm when in a 12 L tank, what is its pressure when put in a neon sign where the volume is 2 L ?

- If the gas is being compressed into a smaller volume, do you expect that the pressure should increase or decrease? \qquad
- Perform the calculation:

3. An aerosol can contains 3 L of a compressed gas at a pressure of 4.1 atmospheres. If this gas is sprayed into a plastic bag, what is the volume of the bag if the pressure is 1.0 atmosphere?

- If the gas is being released into an area with less pressure, do you expect that the volume should increase or decrease? \qquad
- Perform the calculation:

4. What temperature (in K) is needed to obtain a volume of 5 L from a volume of 2 L at 298 K ?

- If the gas is expanding and increasing volume, do you expect that the temperature increased or decreased? \qquad
- Perform the calculation:

5. What is the temperature of 500 L of nitrogen at a pressure of 2.98 atm if it has a temperature of 250 K at a pressure of 3.02 atm and a volume of 400 L ?
6. A gas that has a volume of 28 liters, a temperature of $45^{\circ} \mathrm{C}$, and an unknown pressure has its volume increased to 34 liters and its temperature increased to $65^{\circ} \mathrm{C}$, and a pressure measured to be 2.0 atm . What was the original pressure of the gas? (Hint: Check your temperatures!)

Gas Variables Relationships:

For questions 7-12, complete the statements by writing "decreases," "increases," or "remains the same" on the line provided in regards to the statement below:

As a gas is compressed in a cylinder (volume is decreased)...
7. its mass \qquad .
8. the number of gas molecules \qquad .
9. its pressure \qquad
10. its volume \qquad .
11. the distance between gas molecules \qquad .
12. its temperature \qquad .
13. The theory that explains the behavior of gases in a confined space is called the \qquad .
14. The Earth's atmosphere has weight, which creates \qquad
\qquad . Why do we not notice this normally? When might we notice it?
15. Circle one: If pressure is constant, the volume of a sample of gas (increases/decreases) as the temperature increases.
16. What is absolute zero?

Match the variables used to describe gases to their correct units.
18. Farenheit (${ }^{\circ} \mathrm{F}$)
19. Celsius (${ }^{\circ} \mathrm{C}$)
20. Milliliter (mL)
21. Kelvin (K)
22. atmospheres (atm)
23. Liters (L)
23. Kilopascals (kPa)

