Metric and Chemistry Conversions Practice

Chemistry Conversion Factors:

1 mole $=6.022 \times 10^{23}$ atoms $/$ molecules	1 mole $=22.4 \mathrm{~L}$ of gas

Complete the conversions below with a partner. Show all work and round to correct sig figs w/units:

Common Prefixes Used with SI Units			
Prefix	Symbol	Conversion Factor to Base Unit	Order of Magnitude
Giga-	G	$1,000,000,000$ base $=1$ Giga	10^{9}
Mega-	M	$1,000,000$ base $=1$ Mega	10^{6}
kilo-	k	1,000 base $=1$ kilo	10^{3}
hecto	h	100 base $=1$ hecto	10^{2}
deka-	da	10 base $=1$ deka	10^{1}
	Base Unit	1 base	10^{0}
deci-	d	1 base $=10$ deci	10^{-1}
centi-	c	1 base $=100$ centi	10^{-2}
milli-	m	1 base $=1,000$ milli	10^{-3}
micro-	μ	1 base $=1,000,000$ micro	10^{-6}
nano-	n	1 base $=1,000,000,000$ nano	10^{-9}
pico-	p	1 base $=1,000,000,000,000$ pico	10^{-12}

$1.9 \times 10^{-3} \mathrm{~Hz}=\ldots \mathrm{GHz}$	1.25 mol of $\mathrm{O}_{2}=\ldots \quad \mathrm{L}$ of O_{2}	$8.43 \mathrm{~km}=\ldots \ldots$ meters
7.54×10^{19} atoms $\mathrm{Mg}=$ \qquad mol Mg	1.5 Gigabyte (GB) = \qquad bytes (Bytes is a base unit)	87.54 L of Methane $=$ mol Methane
$8.65 \mathrm{~L}^{\text {of } \mathrm{CO}_{2}}=$ \qquad atoms CO_{2}	1.23×10^{25} microliters $=\ldots \quad \mathrm{L}$	$\underset{\text { (millihertz) }}{* 9.54 \mathrm{GHz}=} \mathrm{mHz}$

Team Quiz:

- Show all work and round your final answer to two decimal places with units:

1.	2.	3.

Reflect:

Write a short paragraph below describing how to do ANY dimensional analysis conversion:

