Name: Pd: ## MOLARITY PRACTICE Calculating Molarity Practice: Show all your work including units and substance. Box your final answer. Reminder: 1000 mL = 1 Liter 1. What is the **definition**, **formula**, and **unit** of molarity 2. Calculate the molarity of 0.120 moles NaHCO₃ in 0.50 L of solution. Calculate the number of moles of NaCl contained in 0.500L of a 2.5M solution. 3. Calculate the molarity of 3.2 moles of sugar, $C_{12}H_{22}O_{11}$ in 0.5 L of solution. 4. What is the molar concentration of 1.0 mol of KCl dissolved in 750,0 mL of solution? (Δ to L) 5. 0.75L Calculate the number of moles of NaOH contained in 250 mL of a 0.05M solution. (A to L) 6. 7. Calculate the molarity of 29.25 grams of NaCl in 2.0 liters of solution. (Δ to mol) $$\frac{29.25g \mid 1 mol}{58.84g} = \frac{0.5005}{mol} = 0.25 M NaCl$$ How many grams of NaCl are contained in the solution discussed in problem #3? 8. - 9. Which solution is more concentrated? SHOW WORK! - a. Solution "A" contains $50.0 \, \mathrm{g}$ of CaCO₃ in $500.0 \, \mathrm{mL}$ of solution. $0.999 \, \mathrm{M}$ - b. Solution "B" contains 6.0 moles of H₂SO₄ in 4.0 L of solution. 10. How many liters of solution can be produced from 2.5 moles of solute if a 2.0 M solution is needed? 11. What volume of a 0.25 M solution can be made using 0.55 moles of Ca(OH)₂? 10.0/1 peo. 87 = 75.83 | 000 Ph. Wood Longe A En 12. How many moles of H₂SO₄ are present in 1.63 liters of a 0.954 M solution?