Review: Unit 2: Atomic Structure and Nuclear Chem - Honors

Parts of an Atom

1. Complete the table below.

Subatomic Particle	Charge	Relative Mass (AMU)	Location in the Atom

- 2. What causes an atom to be **electrically charged**?
- 3. Which subatomic particles are responsible for giving an atom its **mass**? Where are these particles located? Why is the other particle not included in the mass number?
- 4. Look at how the periodic table is arranged. What **number** is used to determine the order of the elements? (What is it CALLED, not where is it located)

Atoms, lons, and lsotopes

- 5. How does an atom become an **ion**?
- 6. Circle the correct choice to complete the sentences below.
 - a. Sulfur must (gain/lose) electrons to become S⁻². S⁻² is an example of a (cation/anion).
 - b. Calcium must (gain/lose) electrons to become Ca⁺². Ca⁺² is an example of a (cation/anion).
 - c. If an two atoms of the same element have different masses, then they are called **(isotopes/ions/atoms)** and they have different numbers of **(protons/neutrons/electrons)**.
- 7. Determine the **mass number** of an atom with 9 protons, 12 neutrons, and 8 electrons. Write the **isotopic symbol** for this atom.

Name:	Date:	Pd:

- 8. Atoms gain and lose electrons in order to attempt to achieve a valence shell configuration with
 - _____ electrons. This is called the ______ Rule.
- 9. Explain the difference between mass number and average atomic mass.
- 10. Predict the **charge** (you will not have your colored periodic table on the test) of each ion and complete the table below.

Element	Symbol	# Protons	# Electrons	# Valence Electrons	Charge of Common Ion Formed	Cation/Anion?
Lithium						
Chlorine						
Phosphorus						
Calcium						
Aluminum						

11. Label the groups, periods, valence electrons, and common ion formed on the table below:

12. Identify each number in the **isotope symbol** below. How many protons, neutrons, and electrons are present?

 ${}^{36}_{17}$ Cl¹⁻

- 13. Calculate **average atomic mass** for each of the following:
 - a. Rubidium is a soft, silvery-white metal that has two common isotopes, ⁸⁵Rb and ⁸⁷Rb. If the abundance of ⁸⁵Rb is 72.2% and the abundance of ⁸⁷Rb is 27.8%, what is the average atomic mass of rubidium? Round to the correct number of sig figs (use the % abundance values).
 - b. An unknown element (X) contains 2 isotopes. The first isotopes has an abundance of 51.86% and a mass of 106.91 amu. The rest of the atoms have a mass of 108.91 amu. Determine the average atomic mass and the identity of the element. Round to the correct number of sig figs (use the % abundance and mass values)

Models of the Atom & Atomic Spectra:

- 15. Draw and describe each of the following **models** of the atom. Label the **subatomic particles** and **parts** of the atom. Also, identify what was incorrect about this model.
 - a. Bohr c. Rutherford

b. Dalton

d. J.J. Thomson (Plum Pudding)

16. Which model was the first to contain/discover each of the following:

- a. Energy Levels: _____
- b. A Nucleus: _____
- c. Electrons: _____
- d. Protons/Positive Charge: _____

29. Complete the following table on nuclear decay particles:

Type of Decay	Decay Particle (draw symbol)	What does it do to the isotope?
Alpha		
Beta Negative		
Beta Positive		
Gamma		

30.Complete the following nuclear decay reactions:

Туре: _____

Туре: _____

Туре: _____

Туре: _____

- 31. Write the following nuclear decay reactions:
 - a. Radon-222 undergoes alpha decay.

b. Polonium-210 releases a negatively charged particle with no mass during beta decay.

- c. During a gamma decay process, Francium-221 releases energy.
- 32. Write the following nuclear reactions. Then identify them as Fission or Fusion:
 - a. Uranium-235 is struck with a neutron and produces Tin-125 and Molybdenum-110
 - b. Hydrogen-3 and Hydrogen-2 combine to form Helium-4
- 33. Chromium-48 decays. After 6 half-lives, what fraction of the original nuclei would remain?
- 34. The half life of iodine-125 is 60 days. If you have 200 grams of I-125, how much would be left after 360 days?
- 35. Palladium-100 has a half-life of 3.6 days. If one had exactly 6,000,000 atoms at the start, how many atoms would be present after 22.4 days?

Throwback Questions:

- 1. The frequency of a microwave is 1.98 x 10⁻⁴ MHz. What is this measurement in Hz. Round to the correct number of sig figs.
- 2. Assuming the following beaker is measured in milliliters, record the measurement with the correct uncertainty.

3. How many days would pass if a person traveled to Mars and it took 2.3 years to arrive. Round to the correct number of sig figs.