Γopic(s):	Details:				
sotopes	Formed when an atom loses or gains	(often during			
).				
	Affects the of the atom but not the				
	• Average atomic mass is the	average mass of all of th			
	naturally occuring	of that			
	 It factors in the 	of each isotope.			
	3 protons 4 neutrons O	3 protons 3 neutrons			
	⊗]•	֎]			
	o Proton	•			
	Neutron 🔍				
	Li-7 Electron O	Li-6			
Isotopes - Radioactive Decay	When isotopes are, they can undergo				
	When this happens, they can emit or				
	In order to reach a more state.				
	Alpha decay				
	$^{235}_{92}U \longrightarrow ^{231}_{90}Th + ^{4}_{2}He$	Copy down the			
	Beta decay	Radioactive Decay			
	$^{235}_{92}U \longrightarrow ^{235}_{93}Np + ^{0}_{-1}e$	on a separate sheet of paper and attach			
	Gamma decay	to your notes!			
	235 235 0				

Date: _____

Name _____

Pd _____

Average Atomic Mass	Average Atomic Mass is calculated by multiplying the of each			
	by its respective	an	nd the totals.	
	Using the data below, calculate the average atomic mass of Carbon:			
	Isotope	Mass	Percent Abundance	
	Carbon-12	12.000	98.90%	
	Carbon-13	13.003	1.10%	
AAM Practice	 Naturally occurring chlorine consists of 75.00% Cl-35 and 25.00% Cl-37. Find the average atomic mass. Calculate the atomic mass of an element with isotope A occurring 70.0% of the 			
	time with a mass of 13.0 a mass of 15.0 amu.	amu and isotope B occurr	ring 30.0% of the time with a	
SUMMARY: Re-read	your notes from today and summ	narize them in 2 or more s	sentences.	

Practice Problems:

1. How do atoms become isotopes?

- 2. Why do nuclei emit particles or rays of energy?
- 3. Explain the difference between beta positive and beta negative decay.

- 4. The term "average atomic mass" is a _____average, and so is calculated differently from a "normal" average. Explain how this is used in the calculation.
- 5. The element copper has naturally occurring isotopes. The relative abundance and atomic masses are 69.2% for a mass of 63 amu and 30.8% for a mass of 65 amu. Calculate the average atomic mass of copper. **Show all work!**
- 6. The four isotopes of lead are shown below, each with its percent by mass abundance and the composition of its nucleus. Using the following data, first calculate the approximate atomic mass of each isotope. (Assume that each proton and neutron has a mass of 1.00 amu. Disregard the mass of the electrons.) Finally, calculate the average atomic mass of lead.

82p	82p	82p	82p
122n	124n	125n	126n
1.37%	26.26%	20.82%	51.55%

7. There are three isotopes of silicon. They have mass numbers of 28, 29 and 30. The average atomic mass of silicon is 28.086amu. What does this say about the relative abundances of the three isotopes?

Decay Practice:

Fill in the missing details from the equations:	Write the equation for each:	
	3. The alpha decay of Radon-198	
1 \longrightarrow ²³¹ Th + $\frac{4}{2}$ He 2 \longrightarrow $\frac{0}{-1}$ e + $\frac{131}{54}$ Xe	4. The beta positive decay of Uranium-237	
	5. Plutonium-244 undergoes gamma decay	