Unit 2, Section 2 - Light Energy - Electromagnetic Radiation

As a form of energy, light (electromagnetic radiation) travels in \qquad through the environment. Below are the parts of a wave:

1 - \qquad
2 - \qquad
3 - \qquad
4 - \qquad

Energy of a wave can be identified in two easy ways: wavelength and frequency of the wave. Wavelength is a measurement of the distance from \qquad to \qquad on two consecutive waves and is often measured in meters or nanometers. Frequency refers to the number of waves that pass a point per \qquad , measured in Hertz (Hz).

Let's practice some metric conversions!

- Convert from 34 cm to meters:

34 centimeters (cm)	0.01 meters (m)
	1 centimeters (cm)

- Convert from $1,340 \mathrm{~km}$ to millimeters:

Multiplication Factor	Prefix	Symbol
$1,000,000,000=10^{9}$	giga	G
$1,000,000=10^{6}$	mega	M
$1,000=10^{3}$	kilo	k
$\begin{aligned} 100 & =10^{2} \\ 1 & =1\end{aligned}$	hecto	h
$0.01=10^{-2}$	centi	c
$0.001=10^{-3}$	milli	m
$0.000001=10^{-6}$	micro	μ
$0.000000001=10^{-9}$	nano	n

- Convert from 1.23×10^{14} nanometers (nm) to meters:
- Convert from 2.3 Megahertz (MHz) to Hertz (Hz):

Electromagnetic Spectrum:

The electromagnetic spectrum is the full spectrum of all light energy. The spectrum is designed based on decreasing \qquad and increasing \qquad . The shorter the wavelength, the \qquad the energy of the wave.

Circle the correct answer for the statements/questions below:

1. The waves to the RIGHT on the spectrum are at a (higher energy / lower energy) than the waves to the left.
2. Which of the following energies has the LONGER wavelength? Radio or Infrared
3. Which of the following energies has the SHORTER wavelength? X-Ray or Microwave

Match the following wavelengths/frequencies of light with their correct type of radiation:

1. Wavelength of 1.0×10^{-5} meters $(\mathrm{m})=$ \qquad
2. Wavelength of 9.43×10^{-10} meters $(\mathrm{m})=$ \qquad
3. Frequency of 1.22×10^{5} meters $(\mathrm{m})=$ \qquad
4. Frequency of 5.4×10^{15} meters $(\mathrm{m})=$ \qquad
Now, let's put it all together. Convert the following, then identify the correct type of radiation:
5. 49 nanometers $(\mathrm{nm})=$ \qquad meters (m) - \qquad
6. 0.0032 nanometers $(\mathrm{nm})=$ \qquad meters (m) - \qquad
