## Unit 3, Section 1 - Energy Forms and Electromagnetic Radiation HONORS

## Energy Transfer:

$\qquad$ is the process in which energy is transferred from object to another. This process can be broken down into three different methods: conduction, convection, and radiation. $\qquad$ is the first method of which energy is directly transferred from one object to another. The second method, $\qquad$ , is when energy is transferred due to the presence and movement of fluids or gases. The third method, $\qquad$ , is the process in which energy is transferred through waves, or more specifically electromagnetic waves. It is important to note that this method of energy transfer does not require the objects to be in direct contact.

Label and color the diagram below to show conduction, convection, and radiation:


Types of Energy:

| Kinetic Energy | Potential Energy |
| :---: | :---: |
|  |  |

## Forms of Energy:

| Energy Form | Type of Energy <br> (Kinetic or Potential) | Description |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Practice:

Identify the type of heat transfer as conduction(CD), convection(CV), or radiation(R):
$\qquad$ The heat you feel from a fireplace
$\qquad$ Transfer through solids
$\qquad$ A pan heating on a hot stove

## Match the form of energy with its definition.

1. $\qquad$ Heat
A. Energy of an atom being split or fused
2. $\qquad$ Nuclear
B. Energy of moving electrons (charged particles)
3. $\qquad$ Radiant
C. Energy of motion
4. $\qquad$ Mechanical
D. Light energy - electromagnetic radiation
5. $\qquad$ Chemical
E. Energy (kinetic or potential) of moving objects
6. $\qquad$ Electrical
F. Energy of bonds in molecules and compounds
7. $\qquad$ Potential
G. Stored energy
8. $\qquad$ Kinetic
H. Thermal energy - motion of molecules

## Electromagnetic Radiation (Radiant Energy):

As a form of energy, light (electromagnetic radiation) travels in $\qquad$ through the environment. Below are the parts of a wave:

1 - $\qquad$
2 - $\qquad$
3 - $\qquad$
4 - $\qquad$


Energy of a wave can be identified in two easy ways: wavelength and frequency of the wave. Wavelength is a measurement of the distance from $\qquad$ to $\qquad$ on two consecutive waves and is often measured in meters or nanometers. Frequency refers to the number of waves that pass a point per $\qquad$ , measured in Hertz (Hz).

## Let's practice some metric conversions!

- Convert from 34 cm to meters:

| 34 centimeters $(\mathrm{cm})$ | 0.01 meters $(\mathrm{m})$ |
| :--- | :--- |
|  | 1 centimeters $(\mathrm{cm})$ |

- Convert from $1,340 \mathrm{~km}$ to millimeters:

| Common Prefixes Used with SI Units |  |  |  |
| :---: | :---: | :---: | :---: |
| Prefix | Symbol | Conversion Factor to Base Unit | Order of Magnitude |
| Giga- | G | $1,000,000,000$ base $=1$ Giga | $10^{9}$ |
| Mega- | M | $1,000,000$ base $=1$ Mega | $10^{6}$ |
| kilo- | k | 1,000 base $=1$ kilo | $10^{3}$ |
| hecto | h | 100 base $=1$ hecto | $10^{2}$ |
| deka- | da | 10 base $=1$ deka | $10^{1}$ |
|  | Base | 1 base | $10^{0}$ |
| Unit | d | 1 base $=10$ deci | $10^{-1}$ |
| centi- | c | 1 base $=100$ centi | $10^{-2}$ |
| milli- | m | 1 base $=1,000$ milli | $10^{-3}$ |
| micro- | $\mu$ | 1 base $=1,000,000$ micro | $10^{-6}$ |
| nano- | n | 1 base $=1,000,000,000$ nano | $10^{-9}$ |
| pico- | p | 1 base $=1,000,000,000,000$ pico | $10^{-12}$ |

- Convert from $1.23 \times 10^{14}$ nanometers (nm) to meters:
- Convert from 2.3 Megahertz (MHz) to Hertz (Hz):


## Electromagnetic Spectrum:

The electromagnetic spectrum is the full spectrum of all light energy. The spectrum is designed based on decreasing $\qquad$ and increasing $\qquad$ . The shorter the wavelength, the $\qquad$ the energy of the wave.


Circle the correct answer for the statements/questions below:

1. The waves to the RIGHT on the spectrum are at a (higher energy / lower energy) than the waves to the left.
2. Which of the following energies has the LONGER wavelength? Radio or Infrared
3. Which of the following energies has the SHORTER wavelength? X-Ray or Microwave

Match the following wavelengths/frequencies of light with their correct type of radiation:

1. Wavelength of $1.0 \times 10^{-5}$ meters $(\mathrm{m})=$ $\qquad$
2. Wavelength of $9.43 \times 10^{-10}$ meters $(\mathrm{m})=$ $\qquad$
3. Frequency of $1.22 \times 10^{5}$ meters $(\mathrm{m})=$ $\qquad$
4. Frequency of $5.4 \times 10^{15}$ meters $(\mathrm{m})=$ $\qquad$
Now, let's put it all together. Convert the following, then identify the correct type of radiation:
5. 49 nanometers $(\mathrm{nm})=$ $\qquad$ meters ( $m$ ) - $\qquad$
6. 0.0032 nanometers $(\mathrm{nm})=$ $\qquad$ meters (m) - $\qquad$
