Name: Date: Pd:

Unit 3, Section 1 - Energy Forms and Electromagnetic Radiation - HONORS

Energy Transfer:

	is the process in	which energy is transferre	d from object to
another. This process ca	an be broken down into thre	e different methods: condu	iction, convection, and
radiation.	is the first method	d of which energy is directly	y transferred from one
object to another. The se	econd method,	, is when energ	gy is transferred due to
the presence and mover	ment of fluids or gases. The	third method,	, is the
process in which energy	is transferred through wave	es, or more specifically elec	ctromagnetic waves. It
is important to note that	this method of energy trans	fer does not require the ol	bjects to be in direct
contact.			

Label and color the diagram below to show conduction, convection, and radiation:

<u>Types of Energy:</u>			
Kinetic	Energy		Potential Energy
Forms of Energy:			
Energy Form		f Energy r Potential)	Description
Practice:			
Identify the type of heat t	ransfer as conduction(CD), convection(CV),	or radiation(R):
The heat y	ou feel from a fireplace		Moves as a wave
Transfer th	rough solids		Moves as a current
A pan heat	ing on a hot stove		Sun rays on Earth
Match the form of energy	with its definition.		
1 Heat	A. Energ	y of an atom bein	g split or fused
2 Nuclear	B. Energ	y of moving electr	rons (charged particles)
3 Radiant	C. Energ	y of motion	
4 Mechanic	al D. Light	energy - electrom	agnetic radiation
5 Chemical	E. Energ	y (kinetic or poter	ntial) of moving objects
6 Electrical	F. Enerç	gy of bonds in mol	lecules and compounds
7 Potential	G. Store	d energy	
8 Kinetic	H. Thern	nal energy - motio	n of molecules

Electromagnetic Radiation (Radiant Energy):

As a form of energy, light (electromagnetic radiation) travels in ______ through the environment. Below are the parts of a wave:

1 -			
_			

3 -

Energy of a wave can be identified in two easy ways: wavelength and frequency of the wave.

Wavelength is a measurement of the distance from ______ to _____ on two
consecutive waves and is often measured in meters or nanometers. Frequency refers to the number of waves that pass a point per ______, measured in Hertz (Hz).

Let's practice some metric conversions!

- Convert from 34 cm to meters:

34 centimeters (cm)	0.01 meters (m)
	1 centimeters (cm)

Convert from 1,340 km to millimeters:

Prefix	Symbol	Conversion Factor to Base Unit	Order of Magnitude
Giga-	G	1,000,000,000 base = 1 Giga	10 ⁹
Mega-	М	1,000,000 base = 1 Mega	10 ⁶
kilo-	k	1,000 base = 1 kilo	10³
hecto	h	100 base = 1 hecto	10²
deka-	da	10 base = 1 deka	10¹
	Base Unit	1 base	10°
deci-	d	1 base = 10 deci	10 ⁻¹
centi-	С	1 base = 100 centi	10 ⁻²
milli-	m	1 base = 1,000 milli	10 ⁻³
micro-	μ	1 base = 1,000,000 micro	10 ⁻⁶
nano-	n	1 base = 1,000,000,000 nano	10 ⁻⁹
pico-	р	1 base = 1,000,000,000,000 pico	10-12

- Convert from 1.23x10¹⁴ nanometers (nm) to meters:

- Convert from 2.3 Megahertz (MHz) to Hertz (Hz):

Electromagnetic Spectrum:

