Unit y Section 2-Somtions Chemistriy
 Solute Solvent
 =
 Solution
 \square

The ratio of \qquad to \qquad determines the \qquad of the solution. Concentration is often written as brackets around the substance formula. (Ex:
Concentration of Hydrochloric Acid - HCl can be written as [HCI]) Solubility, the ability of a substance to dissolve at a given set of conditions, can also be affected by changes in \qquad because by changing this variable, you change the \qquad between the molecules of solvent, allowing more or less solute to be dissolved between them.

Dissolution:

Types of Solutions:

Unsaturated	Saturated	Supersaturated

Solutions Practice:

- A solution is made from SrCl_{2} and Water. Circle the solute. Draw a box around the solvent.
- If you were to take an unsaturated solution and add more solute, what would happen to the solute? \qquad

Molarity:

Molarity is a measurement of the \qquad of solute per \qquad of solution.

$$
\text { molarity, } \mathrm{M}=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

The unit for molarity is a capital \mathbf{M} and is usually read as "molar". Therefore, a solution with a label that states "2.0M" may be called a "2.0 Molar" solution.

Practice: Show all work and round answers to the correct number of sig figs (or 2 decimal places)!

1. Calculate the molarity of 0.060 moles NaHCO_{3} in 1.50 L of solution.
2. Calculate the number of moles of NaCl contained in 0.500 L of a 1.5 M solution.
3. Calculate the molarity of 34.2 grams of HF in 0.5 L of solution. (Start with gram $\rightarrow \mathbf{m o l}$)
4. What is the molarity if 1.0 mol of KCl is dissolved in 750.0 mL of solution ($1 \mathrm{~L}=1000 \mathrm{~mL}$)?

Mini lab - Make a Stock Somtion:)

Goal: Make 50 mL of a $0.10 \mathrm{M} \mathrm{CuCl}_{2}$ solution.

Pre Lab Questions and Calculations:

1. The solute in this lab is \qquad and the solvent in this lab is \qquad .
2. What formula is used to calculate molarity?
3. Convert the volume (50 mL) to Liters.
4. Use the Molarity formula to calculate how many moles of CuCl_{2} you need.
5. Calculate the molar mass of CuCl_{2}.
6. Convert the moles of solute to grams. (This is the mass we will use to make our solution!)

Making a Solution:

When making a solution, you want to make sure you are using your best lab technique because bad solutions can add major sources of error in lab calculations. EEK!

Procedure:

1. Measure the correct mass of solute needed on the digital balance.
a. This is your answer from Pre-Lab \#6!!
2. Use a graduated cylinder and a pipette to measure the correct volume of solvent.

BE PRESCISE! Keep the graduated cylinder on a stable surface and bend down to eye level. Measure from the bottom of the meniscus.
3. Pour the solute in a beaker or erlenmeyer flask. Add a small amount of the solvent at a time swirling in between. Continue adding slowly.
4. Continue swirling or stirring with a stir rod until all of the solute is dissolved.

