UNIT 4, SECTION 3 - SOUTBILITY CUTEVES

Solubility Curves:

Solubility curve graphs show the relationship of the amount of			that can be
dissolved at specific		Amount of	is measured in grams
of	per 100 grams of wa	ater (the traditional solvent). (1 gram c	of $H_2O = 1 \text{ mL of } H_2O$)

To read a solubility curve graph, match the amount of _____ you are attempting to dissolve at the temperature given (if no temperature is given, assume 25°C).

Solubility Curve Practice: Use the graph above!

- What is the saturation point for Potassium chlorate at 30°C?
- If you had 80 grams of **Potassium nitrate** dissolved per 100 g of H₂O, at what temperatures would it be considered to be <u>supersaturated</u>? (Hint: it is a range starting at 0°C)
- Challenge: At room temp. (25°C), which is more soluble: NH₄Cl or NaNO₃?