HONORS: Unit 6 - Molecular Geometry and IMFs Review

Which lewis dot structure is most correct for CH₄? Why?

H:C:H H	H K H	н—с—н
Why? CHy is tetrahed	ral 50 i+ is 3D	

	CH₃Br	O ₂	NF ₃	H₂S
1. Draw the Dot Diagram with Dipole Vectors 2. Draw ipole (If needed)	B. C. H.	Ö=Ö No Dip. No Net	F: JA	# - 5:
Molecular Shape	Terrahedral	Linear	Trig. Pyva.	Bent
Bond Angles in Molecule	109.5°	180°	107°	105°
Is the molecule polar?	yes	20	yes	yes.
Which IMFs are present in this molecule?	LDF.	LDF & W.	LDF	LDF DD

Complete the following table regarding naming of covalent compounds:

Dichlorine monoxide	ClaO
Oxygen difluoride	OF ₂
Dihydragen monosulfide	H₂S

How many <u>unshared pairs</u> of electrons are on the central atom of an NH₃ molecule?

1

Draw the three resonance structures for Nitrate (NO₃1-)

Draw a diagram (show what the molecules are doing!) for each of the following properties of water.

Explain how the properties of water lead to each type of interaction. $O = H_2O$

Property	Diagram	Explanation		
Surface Tension	0-0-0 HB	HaO@ surface of liquid has HB that holds them together		
Adhesion	10-1-0 T	Hao uses HB+0 Ad attract other Polar objects		
Cohesion	O glass	HaO attaches Co to other HaO W/HB		

Define the following:

a. Electronegativity: attraction of an atom for electrons

b. Polarity: possessing a + and - end

What happens to the molecules of a substance when a substance is <u>melted</u> or <u>boiled</u>? Why do we use <u>melting point</u> and <u>boiling point</u> to test the <u>strength</u> of IMF's?

They spread out so the stronger the IMF, the higher the MP + BP

Why is distillation an effective method for separating substances with different polarities?

Boil 1	iauid	san	dt	ney	Se	paras	e
based	lon	BPS	odit	is	live	ctly	
linked					1	<i>F</i>	

When forming covalent bonds, if an atom has 5 valence electrons how many chemical bonds can it form, assuming it is not an exception to the octet rule?

- a. 1
- b. 2
- d. 4

Using your knowledge of intermolecular forces, explain why the boiling point of NH₃ (-33.3 °C) is higher than the boiling point of either N_2 (–183 °C) or H_2 (–252.9°C)

Why does N₂ have a higher boiling point than H₂ if they are both nonpolar?

Predict whether or not the following substances would <u>dissolve</u>.

Test Tube #	Solvent (Dissolving Medium)	Molecular Polarity	Solute (What is dissolving)	Molecular Polarity	Will it dissolve?
1	Water	Polar	Acetone	Polar	
2	Oil	Nonpolar	Water	Polar	No
3	Acetone	Polar	Oil	Nonpolar	No
4	Oil	Nonpolar	Oil	Nonpolar	

Which of the following would you expect to have the highest boiling point: Propane (CH3CH2CH3) and Propanol (CH₃CH₂CH₂OH)? Why?

plain how-soap allows water to remove oils from your skin, hair, dishes, etc.

Use the graph to the right to answer these questions:

- a. Which substance is most likely to be nonpolar?

 Diethyl ether
- b. What <u>IMF's</u> would that substance have?

LDF only

c. Explain your reasoning.

Nonpolar molecules can't have DD or HB

d. Why do you think ethanol and water have <u>higher boiling points</u> than diethyl ether?

B/c they have Stronger IMFs (DD/HB)

For each diagram, identify which IMF is being shown and explain your reasoning.

Diagram	IMF shown	Explanation
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HB	Strong polar molecules use D-Dinteraction to attract
8^{+} 8^{-} 8^{+} 8^{-} 1 1 1 1 1 1 1 1 1 1	DD	Polar molecules attracta eachorhe b/c of t/-
nucleus $\delta + \delta +$	LDF	temporary polari of repulsionage cloud leads to induced dipole